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While it is well established that maternal stress hormones, such as corticoster-

one (CORT), can induce transgenerational phenotypic plasticity, few studies

have addressed the influence of maternal CORT on pre-natal life stages. We

tested the hypothesis that experimentally increased CORT levels of gravid

female eastern fence lizards (Sceloporus undulatus) would alter within-egg

embryonic phenotype, particularly heart rates. We found that embryos from

CORT-treated mothers had heart rates that increased faster with increasing

temperature, resulting in higher heart rates at developmentally relevant temp-

eratures but similar heart rates at maintenance relevant temperatures,

compared with embryos of control mothers. Thus, maternal CORT appears

to alter the physiology of pre-natal offspring. This may speed development

and decrease the amount of time spent in eggs, the most vulnerable stage of life.

1. Introduction
Environmental stressors such as predation, competition and temperature

extremes can alter concentrations of glucocorticoid (stress) hormones such as

corticosterone (CORT) [1,2]. Increases in maternal stress hormones during grav-

idity can alter the resulting offspring’s phenotype via maternal stress effects [3,4].

Several studies have demonstrated effects of maternal CORT on post-natal off-

spring phenotype [3], but few have addressed effects on embryo phenotypes

(see [5]) despite likely links. For example, elevating CORT of gravid female

fence lizards, Sceloporus undulatus, resulted in increased CORT concentrations

in the yolk of freshly laid eggs [4]. Given the effects of CORT in utero and on

egg contents [4,6], it is likely that offspring phenotypic changes begin in the

embryonic stages.

Since exposure to stressors increases an organism’s heart rate [7], we hypoth-

esize that elevated maternal CORT may increase embryonic heart rate, potentially

via elevations in egg yolk CORT. To test this, we experimentally elevated CORT of

gravid female eastern fence lizards to ecologically relevant levels. We then

measured embryonic heart rate in the resulting eggs at metabolically (less than

268C) and developmentally (greater than or equal to 268C) relevant temperatures

[8]. We predicted that embryos of CORT-treated mothers would have elevated

heart rates and that such effects would be greater at higher temperatures.
2. Material and methods
(a) Animal collection and husbandry
We captured 18 gravid female eastern fence lizards from three sites in southern

Alabama with similar habitat: Geneva State Forest, Conecuh National Forest and
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Figure 1. Main figure shows the relationship between embryo heart rate (beats
min21) and temperature for eastern fence lizard (S. undulatus) eggs obtained
from control (open circles, dotted line; n ¼ 34) and CORT-treated (solid circles,
solid line; n ¼ 28) mothers. Lines are best fit trend lines. Shading represents
temperatures at which heart beats contribute primarily to maintenance (less
than 268C, left panel) or development (greater than or equal to 268C, right
panel). The two outlying data points do not qualitatively change the statistical
results. Insets show the mean (+1 s.e.) heart rate of embryos from control and
CORT-treated mothers at maintenance relevant (upper left) and developmentally
relevant (lower right) temperatures. *p , 0.05. (Online version in colour.)
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Blakeley State Park. Females were returned to the laboratory and

housed in pairs until laying. Each member of a pair was assigned

to a different treatment and at a different stage of gravidity to

ensure we could assign maternity to eggs [4]. Eggs were placed

as clutch groups into plastic tubs containing moist vermiculite

(approx. 2200 kPa), sealed with Seran wrap and incubated at

318C until hatching (approx. 45 days), per MacLeod et al. [9].

Tubs were rotated daily.

(b) Maternal corticosterone treatments
Females were assigned to one of two treatments and received

either a daily dose of 0.2 ml g21 lizard of a solution of 4 mg

CORT (greater than or equal to 92%, Sigma C2505, Saint Louis,

MO, USA) in 1 ml of sesame oil vehicle (approx. 0.8 mg

CORT g21 lizard; range ¼ 0.74–0.87 mg CORT g21), or a

vehicle-only control [4]. This was applied transdermally via pip-

ette at 19.30, after lizards had ceased activity for the evening,

eliminating the need for handling. The treatment was applied

from capture until laying (mean+ s.e. ¼ 34+3 days).

(c) Egg heart rates
We measured heart rates of embryos using an infrared heart rate

monitor (Buddy system Mk1; Avian Biotech, Tallahassee, FL,

USA). We tested 28 eggs from eight CORT-treated females (1–

9 eggs per female) and 34 eggs from 10 control females (1–7

eggs per female) at days 12–41 post-laying. Eggs were tested

between 12.30 and 20.30 at temperatures of 20–358C. This

encompasses temperatures at which embryonic metabolic effort

is directed primarily, but not solely, to maintenance (less than

268C) or to growth and development (greater than or equal to

268C), with more heart beats needed to complete embryogenesis

at cooler temperatures [8]. Eggs were initially measured for heart

rate at two temperatures (n ¼ 18), but logistics constrained

subsequent measurements to a single temperature (n ¼ 44).

The heart rate monitor and eggs (within their incubation tub)

were allowed 30 min to reach the testing temperature prior to

measuring heart rates. An egg was placed on the monitor, and

the external egg (and background monitor) temperature was

measured using an infrared thermometer (Minitemp MT6;

Raytek, Santa Cruz, CA, USA). Eggs were then weighed (nearest

0.01 g).

(d) Statistical analyses
We analysed effects of maternal CORT on embryo heart rate

using three separate linear models, with embryonic heart rate

(beats min21) as the dependent variable. Our first model

included data across our entire temperature range (20–358C).

We then divided the dataset into eggs measured at primarily

maintenance relevant (less than 268C [8]; n ¼ 49 measures of 42

eggs) and developmentally relevant (greater than or equal to

268C [8]; n ¼ 31 measures of 31 eggs) temperatures and analysed

these groups separately. All models included maternal treatment

(CORT or control), temperature, egg mass, time of day measure-

ment was taken and days since laying as covariates, with an

interaction term of treatment * temperature. For the first overall

model, maternal identity (nested within treatment) and egg iden-

tity were included as random effects to account for repeated

representation (multiple eggs per mother and multiple measure-

ments of some eggs). For the two split-temperature models,

maternal identity (nested within treatment) was included as a

fixed effect (the number of levels within eggs of CORT-treated

mothers tested at greater than or equal to 268C was too low for

a random effect to adequately estimate the distribution [10]).

Egg identity was included as a random effect for only the

model of eggs measured at less than 268C as there were no

eggs tested more than once at greater than or equal to 268C.
Non-significant terms (egg mass, time, days since laying, treat-

ment * temperature (only in the divided datasets); p . 0.07)

were omitted from final models to preserve degrees of freedom.

Retaining these factors did not qualitatively change the results.

There are two anomalous data points (figure 1) from the control

treatment. Omitting these did not qualitatively change the

results, so we retained these in our final model for completeness

of data. All analyses were conducted in JMP Pro 13 (SAS Institute

Inc., Cary, NC, USA) with a ¼ 0.05. *p , 0.001.
3. Results
Embryonic heart rate was affected by an interaction between

maternal treatment and temperature (treatment * temperature:

F1,38 ¼ 5.42, p ¼ 0.025; treatment: F1,10 ¼ 0.04, p ¼ 0.845;

temperature: F1,38 ¼ 185.46, p , 0.001). Embryos from

CORT-treated mothers exhibited greater increases in heart

rates with increasing temperature than those from control

mothers (figure 1).

Across maintenance relevant temperatures (less than 268C),

embryo heart rate increased with temperature (temperature:

F1,14¼ 6.49, p ¼ 0.023) and was not affected by maternal treat-

ment (treatment: F1,32¼ 0.31, p ¼ 0.579). Across

developmentally relevant temperatures (greater than or equal

to 268C), embryo heart rate also increased with temperature

(temperature: F1,1 ¼ 8.51, p ¼ 0.009), but embryos from

CORT-treated mothers had higher heart rates than did

embryos from control mothers (treatment: F1,1 ¼ 15.66, p ,

0.001; figure 1 insets).
4. Discussion
Embryos from CORT-treated mothers had more temperature-

sensitive heart rates, and relatively higher heart rates at

temperatures primarily associated with growth and develop-

ment (greater than or equal to 268C), than embryos from
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control mothers (figure 1). There was no difference in heart

rates at temperatures primarily associated with maintenance

functions (less than 268C; [8]). Since higher heart rate can

result in faster development and shorter time to hatching

[8], effects of maternal CORT on embryonic heart rate are

likely to speed development of embryos and result in earlier

hatching, at no cost to maintenance.

The effect of maternal CORT on offspring heart rate could

be a physiological side effect of high maternal CORT, and the

increased thermal sensitivity of embryos from CORT-treated

mothers could incur important costs by decreasing their ther-

mal tolerance range [11]. For example, rapid increases in

heart rate at higher temperatures could result in offspring

reaching or exceeding their physiological performance

threshold. Greater metabolic rates at higher temperatures

could create hypoxic conditions because of embryonic

oxygen demand [12,13], increasing embryonic mortality.

Embryos of control mothers, whose heart rate was less

affected by temperature, may be better suited to warming

events than those of mothers with elevated CORT. Conse-

quently, offspring of stressed mothers may in fact be

maladapted to future environmental change scenarios [14],

such as global warming.

Despite potential costs, the effect of maternal CORT on

offspring heart rate may be an adaptive response to particular

environmental stressors experienced by wild lizards [14]. For

example, earlier hatching of eggs, which is a vulnerable life

stage, may reduce the chance of desiccation or overheating

under drought conditions or help avoid oophagous predators

(e.g. [15]). The predatory red imported fire ant, Solenopsis
invicta, is abundant at our study sites [16]. Encounters with

these venomous ants elevate CORT concentrations of lizards

(including during gestation) [17]. Females with elevated

CORT produce eggs with higher yolk CORT [4], and embryos

with elevated heart rates (this study). Another study using a

similar protocol found that offspring from CORT-treated
mothers hatched earlier than those from control mothers

([4]; we could not measure incubation duration of measured

eggs in this study owing to unexpected egg mortality). Since

fire ants can depredate eggs but pose a lower threat to juven-

iles [18], it seems likely that offspring from CORT-elevated

mothers that develop faster and hatch earlier would be less

vulnerable to fire ant predation.

Our results demonstrate that maternal CORT can increase

the thermal sensitivity of an important physiological trait,

heart rate, in embryos. This maternal effect could speed

embryo development and time to hatching, minimizing

time spent in the vulnerable egg stage, but could make

embryos more susceptible to negative effects of increased

temperatures associated with global climate change. Further

examination of the costs and/or benefits of maternal CORT

on heart rate at the embryonic and subsequent life stages

will be critical to understanding the potential adaptive

significance of maternal CORT.
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